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Abstract With the advances of machine learning
algorithms and the pervasiveness of network terminals,
online medical primary diagnosis scheme, which can pro-
vide the primary diagnosis service anywhere anytime,
has attracted considerable interest recently. However, the
flourish of online medical primary diagnosis scheme still
faces many challenges including information security and
privacy preservation. In this paper, we propose an efficient
and privacy-preserving medical primary diagnosis scheme,
called PDiag, on naive Bayes classification. With PDiag,
the sensitive personal health information can be processed
without privacy disclosure during online medical primary
diagnosis service. Specifically, based on an improved
expression for the naive Bayes classifier, an efficient and
privacy-preserving classification scheme is introduced
with lightweight polynomial aggregation technique. The
encrypted user query is directly operated at the service
provider without decryption, and the diagnosis result can
only be decrypted by user. Through extensive analysis,
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we show that PDiag ensures users’ health information and
service provider’s prediction model are kept confidential,
and has significantly less computation and communication
overhead than existing schemes. In addition, performance
evaluations via implementing PDiag on smartphone and
computer demonstrate PDiag’s effectiveness in term of real
environment.
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1 Introduction

Online medical primary diagnosis system, which can pro-
vide the pre-diagnosis service anywhere anytime and guide
users’ behaviors, has attracted considerable interest. Due to
the lack of medical doctors, the waiting time of seeing doc-
tors for patients increased in many countries [1–3]. It is
true that most people are unlikely to be familiar with medi-
cal departments in hospitals and certainly not familiar with
the symptoms associated with the different diseases. If an
individual goes to hospital without any preparation, it may
be a frustrating and time-wasting exercise in case she/he
consults a doctor not trained or specialized in the particu-
lar disease. As ubiquitous healthcare services are becoming
more and more popular, especially under the urgent demand
of the global aging issue, primary diagnosis scheme should
be developed to help people get a primary disease diagnosis
knowledge conveniently [4]. As one of the most popu-
lar machine learning techniques, naive Bayes classification,
which is a simple and effective probabilistic classification
method, has been widely used for predicting various dis-
eases in medical informatics [5–7]. For instance, through
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building a prediction model upon existing clinical datasets
by using naive Bayes classification algorithm, an untrusted
third-party organization can provide online medical primary
diagnosis service, and users can request the primary diagno-
sis service through Internet before they go to a hospital for
diagnosis [8].

However, due to the sensitivity of users’ health data,
users are usually reluctant to offer their medical informa-
tion to an untrusted third-party organization for obtaining
online medical primary diagnosis service. Meanwhile, as
the predication model is also private and valuable asset, the
third-party organization may be reluctant to reveal the infor-
mation of prediction model as well. Therefore, the flourish
of online medical primary diagnosis scheme still hinges
upon how to fully understand and manage these challenges
including information security and privacy preservation.
Thus, it is of great importance to develop adequate security
techniques for protecting privacy of medical users as well
as the prediction model of third-party organization. We can
image that, if a stronger protection is available, users may
be more willing to receive many services provided by the
third-party through internet [9–11]. To address these chal-
lenges, different homomorphic encryption techniques are
introduced in the medical diagnosis system [12–14]. How-
ever, most of the homomorphic encryption schemes are not
very efficient and not quite appropriate for providing online
medical primary diagnosis service.

In order to address the above-mentioned challenges, we
propose an efficient and privacy-preserving online medical
primary diagnosis scheme, called PDiag, on naive Bayes
classification, which preserves users’ query information and
the service provider’s diagnosis model. With PDiag scheme,
users can achieve privacy-preserving online medical pri-
mary diagnosis service by themselves according to the
diagnosis model stored at the service provider. The service
provider will provide medical prediction service without the
leakage of disease diagnosis model. Specifically, the main
contributions of this paper are threefold.

First, the proposed PDiag is secure and privacy-
preserving. With PDiag, the user can keep her/his query
information and the final primary diagnosis result secret
from the service provider, meanwhile the service provider
can also keep the diagnosis model secret from the user.
In our novel PDiag scheme, the user first preprocesses
query information by introducing different random num-
bers, and the service provider calculates the preprocessed
query information by naive Bayes classification standard
with lightweight polynomial aggregation technique, then
the user will obtain the primary diagnosis result.

Second, PDiag can provide the online medical primary
diagnosis service with a high accuracy. To evaluate the
accuracy of the proposed PDiag scheme, we construct an

improved expression for the naive Bayes classifier, verify
the correctness of PDiag, and do experiments over two real
datasets from the UCI machine learning repository. Final
experimental results show that PDiag can achieve a high
accuracy.

Third, PDiag is efficient in terms of computation and
communication overhead. Since the user only interacts
with the service provider for once during the process of
medical diagnosis, different from other time-consuming
homomorphic encryption techniques, all of the encryption
operations are based on lightweight polynomial aggregation
techniques. Meanwhile, we also develop a custom simu-
lator built in Java, and implement PDiag over smartphone
and computer in real environment. Performance evalua-
tion demonstrates that our proposed PDiag can provide an
efficient online medical primary diagnosis service in real
life.

The remainder of this paper is organized as follows. In
Section 2, we formalize the system model, security require-
ments, and identify our design goal. In Section 3, we review
the bilinear pairing and the naive Bayes classifier, and pro-
pose an improved expression for naive Bayes classification
standard as the preliminaries. Then, we present our PDiag
scheme in Section 4, followed by the security analysis and
performance evaluation in Section 5 and Section 6, respec-
tively. We also review some related works in Section 7.
Finally, we draw our conclusions in Section 8.

2 System model and design goal

In this section, we formalize the system model, security
requirements, and identify our design goal.

2.1 System model

In our system model, we mainly focus on how the ser-
vice provider offers efficient and privacy-preserving online
medical primary diagnosis services to users whose med-
ical information is sensitive. Each user is equipped with
a computer or smartphone, which can connect with the
service provider for achieving online medical primary diag-
nosis service. Specifically, the system consists of two parts:
service provider (SP) and user, as shown in Fig. 1.

– We consider an authorized data analysis organization
as SP, which owns a naive Bayes classifier built upon
existing clinical datasets which are initially provided by
hospitals, and it provides online medical primary diag-
nosis service for registered medical users. SP computes
the encrypted medical data by naive Bayes classifica-
tion standard. Furthermore, although SP is a server with
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Fig. 1 System model under
consideration
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high performance in computation and storage, since
thousands of users may query services at the same time,
the efficiencies of computation and communication are
still challenging.

– The medical query information is represented with a
query vector, and the registered user can query the
privacy-preserving medical forecasting service by the
query vector. Considering the query vector may con-
tain some sensitive information of user, and sending
the query vector in plaintext to SP may lead to pri-
vacy leakage, the user should perform some encryption
operations during the process of query. Moreover, in
order to lower energy costs, the encryption efficiency of
terminals is also very prerequisite.

2.2 Security requirements

The privacy of users’ medical query information and the
confidentiality of prediction model are crucial for the suc-
cess of online medical primary diagnosis service. In our
security model, we consider users and SP are honest-but-
curious. Specifically, SP provides the online medical pri-
mary diagnosis service correctly, but it is also curious to
users’ medical query information; users will honestly exe-
cute the operations to achieve the final prediction result,
but they also try to analyze the information of prediction
model; moreover, users may try to access the online medical
primary diagnosis service without registering. Therefore, to
guarantee the privacy of users’ medical query information
and the confidentiality of prediction model, the following
security requirements should be satisfied.

– Privacy. Protecting users’ medical query information
from SP, i.e., even if SP receives the encrypted query
vector from the user, it cannot identify the user’s med-
ical query information in plaintext form. At the same

time, though SP computes the intermediate parame-
ters according to the encrypted query vector of user, it
cannot obtain the final diagnosis result.

– Confidentiality. Keeping the diagnosis model secret
from users, i.e., even if the user obtains the intermedi-
ate parameters calculated by SP, she/he cannot identify
the parameters of diagnosis model.

– Authentication. Authenticating an encrypted query vec-
tor that is really sent by a legal user and has not been
altered during the transmission, i.e., if an illegal user
forges a data query, this malicious operation should
be detected. Meanwhile, the responses from SP should
also be authenticated so that the user can receive the
authentic and reliable query result.

2.3 Design goal

Under the aforementioned system model and security
requirements, our design goal is to develop an efficient
and privacy-preserving online medical primary diagnosis
scheme. Specifically, the following three objects should be
achieved.

– The security requirements should be guaranteed. If the
scheme does not consider the security, users’ medical
query information and the diagnosis model could be
disclosed. Then, the online medical primary diagno-
sis scheme cannot flourish. Thus, the proposed scheme
should achieve the confidentiality and authentication
simultaneously.

– Data query result’s accuracy should be guaranteed. It
is important that applying the privacy-preserving strat-
egy cannot compromise the accuracy. Therefore, the
proposed scheme should also achieve a high accuracy.

– Low communication overhead and low computation com-
plexity should be guaranteed. Considering the real-time
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requirements of online medical primary diagnosis ser-
vice and the diversity of terminals, the proposed scheme
should have low overhead in terms of communication
and computation.

3 Preliminaries

In this section, we review the bilinear pairing [15] and the
classifier of naive Bayes [16], and then improve the naive
Bayes classification standard, which will serve as the basis
of our proposed PDiag scheme.

3.1 Bilinear pairing

Let G, GT be two cyclic groups of the same prime order
q, and g is a generator of group G. Suppose G and GT are
equipped with a pairing, i.e., a non-degenerated and effi-
ciently computable bilinear map e : G × G → GT such that
e(g, g) �= 1GT

and e(ua, vb) = e(u, v)ab for all u, v ∈ G

and a, b ∈ Z
∗
q . Moreover, e(u, v) can be computed effi-

ciently for all u, v ∈ G.

Definition 1 A bilinear parameter generator Gen is a prob-
abilistic algorithm that takes a security parameter κ as input,
and outputs a 5-tuple (q, g,G,GT , e), where q is a κ-bit
prime number, G and GT are two groups with order q, g ∈
G is a generator, and e : G × G → GT is a non-degenerated
and efficiently computable bilinear map.

3.2 Classifier of naive Bayes

Naive Bayes classifier is based on Bayes theorem which
can be used to compute posterior probabilities given obser-
vations [17]. There are f classes which are denoted as
C = {C1, C2, . . . , Cf }. Let a n-dimension vector x =
(x1, . . . , xn) represent a instance and depict n measured val-
ues of the n attributes, A1, . . . , An. For clarity, the bold
and regular symbols indicate vectors and scalar variables,
respectively. The naive Bayes classifier can predict the vec-
tor x lies in the class C

j
′ if and only if the posterior

probability

P(C
j

′ |x ) > P (Cj |x ),

where 1 ≤ j ≤ f, j �= j
′
. The posterior probability

P(Cj |x ) = P(x|Cj )·P(Cj )

P (x) can be obtained by Bayes’s theo-
rem, where P(Cj ) is the prior probability of Cj . Since P(x)
is the same for all classes, P(Cj |x ) ∝ P(x

∣
∣Cj ) · P(Cj ),

i.e., only P(x
∣
∣Cj ) · P(Cj ) needs to be maximized. More-

over, a naive Bayes classifier assumes that all the features

are conditionally independent of one another, mathemati-
cally meaning

P(x
∣
∣Cj ) =

n
∏

i=1

P(xi

∣
∣Cj ),

where P(x1
∣
∣Cj ), P(x2

∣
∣Cj ), . . . , P (xn

∣
∣Cj ) can be easily

estimated from the training set.

3.3 Improved naive Bayes classification standard

To predict the class label of x = (x1, . . . , xn) by the naive
Bayes model, the conditional probability P(xi

∣
∣Cj ) can be

estimated as P(xi

∣
∣Cj ) = N

(j)
xi

Nj
, where N

(j)
xi

is the num-
ber of instances whose class labels are Cj and the values
of attribute Ai are xi , and Nj is the number of instances in
class Cj , i = 1, . . . , n, j = 1, . . . , f . Meanwhile, the priori

probability P(Cj ) can be computed as P(Cj ) = Nj

N
, where

N is the total number of instances. Denote the class label
of x by y, and y can be computed as y = arg max

Cj ∈C

(P (Cj ) ·

P(x
∣
∣Cj )) = arg max

Cj ∈C

(P (Cj ) ·
n∏

i=1
P(xi

∣
∣Cj )). Thus, the

naive Bayes classification standard can be described as

y = arg max
j∈{1,...,f }

(P (Cj ) ·
n

∏

i=1

P(xi

∣
∣Cj ))

= arg max
j∈{1,...,f }

(
Nj

N
·

n
∏

i=1

N
(j)
xi

Nj

)

= arg max
j∈{1,...,f }

(
1

N · Nn−1
j

·
n

∏

i=1

N
(j)
xi

). (1)

Since N is the same for all classes, Eq. (1) can be
expressed as

y = arg max
j∈{1,...,f }

(
1

Nn−1
j

·
n

∏

i=1

N
(j)
xi

). (2)

For convenience of calculations, we denote the lowest com-
mon multiple of Nn−1

1 , Nn−1
2 , . . . and Nn−1

f by lcm, i.e.,

lcm = [Nn−1
1 , Nn−1

2 , . . . , Nn−1
f ], and thus Eq. (2) can be

improved as

y = arg max
j∈{1,...,f }

(
lcm

Nn−1
j

·
n

∏

i=1

N
(j)
xi

). (3)

4 Proposed PDiag scheme

In this section, we present our efficient and privacy-
preserving online medical primary diagnosis scheme on
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naive Bayesian classification which mainly consists of five
phases: system initialization, data preparation, query gener-
ation, privacy-preserving online medical primary diagnosis
service, query result reading. Specially, SP first provides
registration for the user in the system initialization phase and
does some statistical analysis in the data preparation phase.
Then the user preprocesses query information by intro-
ducing different random numbers in the query generation
phase. After that, SP operates the preprocessed query infor-
mation with lightweight polynomial aggregation technique
in the privacy-preserving online medical primary diagnosis
service phase. Finally, the user obtains the final diagno-
sis result in the query result reading phase. To facilitate
understanding, we describe the process as shown in Fig. 2.
Meanwhile, for easier expression, we give the description of
variables used in the following subsections in Table 1.

4.1 System initialization

SP first chooses security parameter κ to generate the bilin-
ear parameters (q, g,G,GT, e) by running Gen(κ). Then,
SP chooses a random number sSP ∈ Z

∗
q as its pri-

vate key SKSP , and computes its public key PKSP =
gSKSP . In addition, SP chooses a secure asymmetric
encryption algorithm E(), i.e., ECC, and a secure cryp-
tographic hash function H(), where H : {0, 1}∗ →

Z
∗
q . After that, SP keeps its private key SKSP as mas-

ter key secretly and publishes the system parameters <

q, g,G,GT, e, PKSP , E(), H() >.
When registering in the SP, user Uk chooses a random

number sk ∈ Z
∗
q as her/his private key SKUk

, and com-

putes its corresponding public key PKUk
= gSKUk , then

she/he submits her/his information and PKUk
to SP through

a secure channel for signature. SP first checks whether the
user’s information is correct or not. If it is correct, SP makes
a signature for PKUk

with its private key SKSP and sends
it back to Uk .

4.2 Data preparation

In general, SP has plenty of medical instances (we assume
the number of medical instances is N ). Each instance can
be represented by (x(k), Cj ) where x(k) = (x

(k)
1 , . . . , x

(k)
n ),

Cj is the class label of x(k), j = 1, . . . , f , k =
1, . . . , N . SP first checks all the instances and groups the
instances by their class labels, i.e., all instances whose
class labels are Cj belong to one group named group Cj .

For convenience of calculations, each symptom x
(k)
i , i =

1, . . . , n, is normalized into binary, i.e., x
(k)
i should be con-

verted to (bi,1, . . . , bi,mi
) instead, where x

(k)
i is numeric,

bi,1, . . . , bi,mi
are binary, and mi is the value range of

Fig. 2 The conceptual
architecture of PDiag
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Table 1 Variables and their descriptions in PDiag

Variables Description

κ the secure parameter chosen by SP

q, g parameters of bilinear groups

H() the secure cryptographic hash function

E() the secure asymmetric encryption algorithm

A1, . . . , An n symptom attributes

C1, . . . , Cf f disease classes

N the number of instances in the dataset

Nj the number of instances in class Cj

N
(j)
xi

the number of instances whose
class labels are Cj and the values
of attribute Aj are xi

x the query vector of user

x(k) an instance of the dataset

xk
i the value of attribute Ai for instance x(k)

mi the value range of attribute Ai

n the dimension of query vector

b(j)
i the statistics vector of class Cj

lcm the lowest common multiple of
Nn−1

1 , Nn−1
2 , . . . , Nn−1

f

p, α two big primes chosen by Uk

s, ci,mt random numbers chosen by Uk

r
(j)
i random numbers chosen by SP

k1, k2, k3, k4 secure parameters chosen by Uk

x
(k)
i . For example, the attribute age x

(k)
i ranges from 1 to

130, which should be converted into (bi,1, . . . , bi,130). If
x

(k)
i = 35, then the converted attributes bi,35 = 1, and

bi,mt = 0, where mt = 1, . . . , 130 and mt �= 35. Then
SP does some statistical analysis of each bi,mt , where i =
1, . . . , n, mt = 1, . . . , mi . To reduce storage consumption,
SP only stores the number of bi,mt = 1 in class Cj , which

is denoted by N
(j)
i,mt

and equals N
(j)
xi

. The final instance
statistics information stored in SP is shown in Fig. 3.

4.3 Query generation

User Uk wants to query online medical primary diagnosis
service through x = (x1, . . . , xn) ∈ Fn

q1
, which is sensi-

tive and needed to be protected during the process of query.
After registration, user Uk converts each xi , i = 1, . . . , n, to
binary (ai,1, ai,2, . . . , ai,mi

) according to the corresponding
range of attribute value and numerical interval. We define
q1 ≤ 232, n ≤ 232, some security parameters k1, k2, k3, k4,
where k1 > k2

2, k2 · k3 < k1, k2 · k4 < k1 and k3 · k4 < k2
2.

Uk chooses two large primes p and α such that |p| = k1,

|α| = k2. Then she/he sets ai,mi+1 = ai,mi+2 = 0 and
chooses a large random number s ∈ Z∗

p, and executes the
following operations for each ai,mt ,

Wi,mt =
{

s(α · ai,mt + ci,mt ) mod p, if ai,mt �= 0;
s · ci,mt mod p, if ai,mt = 0; (4)

where each ci,mt , i = 1, . . . , n, mt = 1, . . . , mi + 2,
is a random number chosen by Uk with

∣
∣ci,mt

∣
∣ = k3.

Uk keeps s−1 mod p secret, computes Q =
EPKSP

(α||p||W1,1||W1,2|| . . . ||W1,m1+2|| . . . ||Wn,1||Wn,2||
. . . ||Wn,mn+2) and creates a signature Sigk =
(H(Q||T S1))

SKUk by using her/his private key SKUK
,

where T S1 is the current time stamp, which can
resist the potential replay attack. Finally, Uk sends
< Q||T S1||Sigk > to SP.

4.4 Privacy-preserving medical primary diagnosis
service

After receiving < Q||T S1||Sigk >, SP first checks the time
stamp T S1 and the signature Sigk to verify its validity, i.e.,
verify whether e(g, Sigk) = e(PKUk

, H (Q||T S1)). If it
does hold, the signature is accepted, since e(g, Sigk) =
e(g,H (Q||T S1)

SKUk ) = e(PKUk
, H(Q||T S1)). Then,

SP decrypts Q with its private key SKSP to obtain the
encrypted query. To facilitate understanding, we denote
statistics vectors of class Cj stored in SP by b(j)

i =
(b

(j)

i,1 , b
(j)

i,2 , . . . , b
(j)
i,mi

), i = 1, . . . , n. For every b(j)
i , SP

chooses a random number r
(j)
i with

∣
∣
∣r

(j)
i

∣
∣
∣ = k4, sets

Fig. 3 Statistics vectors stored in SP
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b
(j)

i,mi+1 = b
(j)

i,mi+2 = 0, and executes the following opera-
tions.

D
(j)
i,mt

=
{

α · r
(j)
i · b

(j)
i,mt

· Wi,mt mod p, if b
j
i,mt

�= 0;
r
(j)
i · Wi,mt mod p, if b

j
i,mt

= 0; (5)

where mt = 1, . . . , mi + 2, and
n∏

i=1
r
(1)
i =

n∏

i=1
r
(2)
i = . . . =

n∏

i=1
r
(f )
i = A, i = 1, . . . , n, j = 1, . . . , f . SP computes

D
(j)
i =

mi+2∑

mt=1
D

(j)
i,mt

mod p for each b(j)
i , i = 1, . . . , n, j =

1, . . . , f , as follows.

D
(j)
i =

mi+2
∑

mt =1

D
(j)
i,mt

mod p

= αsr
(j)
i

∑

ai,mt �=0,

b
(j)
i,mt

�=0

b
(j)
i,mt

(αai,mt +ci,mt )+sr
(j)
i

∑

ai,mt �=0,

b
(j)
i,mt

=0

(αai,mt +ci,mt )

+αsr
(j)
i

∑

ai,mt =0,

b
(j)
i,mt

�=0

ci,mt b
(j)
i,mt

+ sr
(j)
i

∑

ai,mt =0,

b
(j)
i,mt

=0

ci,mt

= α2sr
(j)
i

∑

ai,mt �=0,

b
(j)
i,mt

�=0

ai,mt b
(j)
i,mt

+ αsr
(j)
i

∑

b
(j)
i,mt

�=0

b
(j)
i,mt

ci,mt

+sr
(j)
i

∑

b
(j)
i,mt

=0

ci,mt + αsr
(j)
i

∑

ai,mt �=0,

b
(j)
i,mt

=0

ai,mt . (6)

Then SP computes R = EPKUk
(D

(1)
1 || . . . ||D(1)

n ||
D

(2)
1 || . . . ||D(2)

n || . . . ||D(f )

1 || . . . ||D(f )
n ) and creates a sig-

nature SigSP = (H(R||T S2))
SKSP by its private key SKSP ,

then sends < R||T S2||SigSP > to Uk .

4.5 Query result reading

After receiving < R||T S2||SigSP >, Uk first checks T S2

and the signature SigSP to verify its validity, i.e., ver-
ify whether e(g, SigSP ) = e(PKSP , H(R||T S2)). If it
does hold, the signature is accepted, since e(g, SigSP ) =
e(g,H(R||T S2)

SKSP ) = e(PKSP , H(R||T S2)). Uk

decrypts R with her/his SKUk
to obtain D

(1)
1 , . . . , D

(1)
n ,

D
(2)
1 , . . . , D

(2)
n , . . . , D

(f )

1 , . . . , D
(f )
n . Then she/he com-

putes M
(j)
i = s−1 · D

(j)
i mod p, i = 1, . . . , n, j =

1, . . . , f . After that, Uk puts them into the formula

T = arg max
j∈{1,...,f }

(

n
∏

i=1

M
(j)
i − (M

(j)
i mod α2)

α2
) (7)

If T = j
′ ∈ {1, . . . , f }, Uk knows she/he more likely suffer

from the disease marked by C
j

′ .

Correctness Traditional naive Bayes classifier judges
which class the query vector lies in according to Eq. (1),
while in Eq. (7), considering the above setting, i.e., k1 > k2

2,
k2 · k3 < k1, k2 · k4 < k1 and k3 · k4 < k2

2, the components
in Eq. (7) should meet the following constraints

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α2r
(j)
i

∑

ai,mt �=0,

b
(j)
i,mt

�=0

ai,mt b
(j)
i,mt

+ αr
(j)
i

∑

b
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(8)

Under the aforementioned constraints, T is implicitly
formed by

T = arg max
j∈{1,...,f }

(

n
∏

i=1

M
(j)
i − (M

(j)
i mod α2)

α2
)

= arg max
j∈{1,...,f }

(

n
∏

i=1

r
(j)
i · (
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i ·
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= arg max
j∈{1,...,f }

(A · lcm

Nn−1
j

·
n

∏

i=1

N
(j)
xi

) (9)

Obviously, since A is the same for all classes, when y =
j

′
, T = j

′
. Therefore, T in Eq. (9) equals y in Eq. (3), and

the correctness of PDiag is verified.

5 Security analysis

In this section, we analyze security properties of the
proposed PDiag scheme. Specifically, following security
requirements discussed earlier, our analysis will focus on
how PDiag can achieve the Bayes classifier confidentiality,
as well as the user’s query information privacy.

– The user’s query information is privacy-preserving in
the proposed PDiag scheme. During the query gener-
ation phase, for each ai,mt , i = 1, 2, . . . , n, mt =
1, . . . , mi +2, we have Wi,mt = s(α ·ai,mt +ci,mt ) mod
p when ai,mt �= 0, and Wi,mt = sci,mt mod p

when ai,mt = 0. Therefore, each ai,mt is random-
ized by freshly generated random integers ci,mt , i =
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1, 2, . . . , n, mt = 1, . . . , mi + 2. SP is curious to
infer the user query information ai,mt from Wi,mt . How-
ever, without knowing the freshly generated random
numbers ci,mt and s, it is impossible to obtain ai,mt .
Since the random number ci,mt is individually used for
once, different ci,mt are unlinkable, and ai,mt , ci,mt , s

are only known by the registered user, SP cannot obtain
the user’s query information according to her/his query.
As described in information theory, as long as the size
of user’s data is less than the random integer, and the
random integers are fresh, SP can only compute iden-
tical priori and posteriori probabilities [18]. Moreover,
the user’s encrypted data query is encrypted again by
SP’s public key PKSP before being sent to SP, then
only SP can obtain the encrypted data query. There-
fore, the user’s query information x = (x1, . . . , xn) is
privacy-preserving during the computation.

– The proposed PDiag scheme can also achieve con-
fidentiality of the Bayes classifier. In the proposed
PDiag scheme, SP stores the statistics information
of all instances, which is considered as its own
asset and should be kept privately. For every statis-
tics vector b(j)

i = (b
(j)

i,1 , b
(j)

i,2 , . . . , b
(j)
i,mi

), SP sets

b
(j)

i,mi+1 = b
(j)

i,mi+2 = 0 to ensure that at least two

random numbers are included in D
(j)
i , which prevents

the user from obtaining b(j)
i = (b

(j)
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(j)
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(j)
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).

Then SP computes D
(j)
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according to Eq. (5). There-

fore, each D
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is randomized by a random number
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will hide the operation in it. After the user receives
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1 , . . . , D
(f )
n ,

she/he can compute M
(j)
i = s−1 · D

(j)
i mod p,

i = 1, . . . , n, j = 1, . . . , f . Then the user can
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(j)
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(j)
i mod α2)

α2 = r
(j)
i

∑
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(j)
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�=o
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As explained previously, since the the size of
random integer r

(j)
i is greater than the size of

∑

ai,mt �=0,

b
(j)
i,mt

�=0

ai,mt · b
(j)
i,mt

, SP ensures the security of statis-

tics vectors information-theoretically, that is, without
knowing freshly generated random numbers r

(j)
i ,

i = 1, . . . , n, j = 1, . . . , f , the user can’t extract the
statistics vector b(j)

i according to D
(j)
i . On the other

hand, owing to the constraints in Eq. (7), T equals y,
i.e., when y = j

′
, T = j

′
. Meanwhile, the user can

achieve T according to Eq. (8), but cannot obtain the

exact value of lcm

Nn−1
j

·
n∏

i=1
N

(j)
xi

, j = 1, . . . , f without

knowing A. Moreover, SP’s response is encrypted
again by the user’s public key before being sent
to the user, then only the right user can obtain the
encrypted response. Therefore, the components of
Bayes classifier are also privacy-preserving during the
computation.

– The authentication of data query request is achieved
in the proposed PDiag scheme. In the proposed
eDiag scheme, each registered user’s request is signed
by Boneh-Lynn-Shacham (BLS) short signature [19].
Since the BLS short signature is provably secure under
the computational Diffie-Hellman problem in the ran-
dom oracle model, the source authentication can be
guaranteed. Moreover, for any unregistered user, since
she/he doesn’t have the secret key, she/he also cannot
submit a valid query request to SP. As a result, the query
request from the unregistered user can be detected in the
proposed PDiag scheme.

From the given analysis, we can conclude that the pro-
posed PDiag scheme is secure and privacy-preserving for
the user as well as SP, and can achieve our security goal.

6 Performance evaluation

In this section, we first evaluate the performance of PDiag
in terms of accuracy and computational complexity. Then,
we implement PDiag and deploy it in real environment to
evaluate its integrated performance.

6.1 Evaluation environment

In order to measure the integrated performance of PDiag in
real environment, we implement PDiag on smartphone and
computer with different datasets. Specifically, a smartphone
with 1.2 GHz, 2GB RAM, Android 4.4.2, and a computer
with 2.9 GHz, 4GB RAM, Windows 7, are chosen to eval-
uate user and SP respectively, which are connected through
802.11g WLAN. Based on PDiag scheme, an application
built in Java, named PDiag.apk, is installed in the smart-
phone, and the simulator for SP is deployed in the computer.
Users who registered in SP can obtain online medical pri-
mary diagnosis by PDiag.apk. In particular, when the user
inputs the medical data by PDiag.apk, the smartphone will
send a query request to the computer and get the response
through WLAN. To obtain the correct classification result
under the above setting, we can just set k1 = 512, k2 = 200,
k3 = 128, and k4 = 64. In addition, we consider two real
datasets to evaluate the accuracy of our proposed scheme.
They are from the UCI machine learning repository called
the Wisconsin Breast Cancer (WBC) [20] and Heart Disease
(HD) datasets [21].
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6.2 Accuracy evaluation

The WBC dataset contains 699 instances where 241
instances are malignant and 458 instances are benign, while
the HD dataset contains 270 instances where 150 instances
are absence of heart disease and 120 instances are presence
of heart disease. The number of features used for training
the naive Bayes classifier for each instance in WBC and HD
datasets are nine and ten, respectively (excluding class label
attribute). Before training the classifiers, each of the features
can be normalized into a binary vector. Then we use the
two datasets to train two different naive Bayes classifiers.
Meanwhile, we choose 200 instances where 100 instances
are malignant and 100 instances are benign from the WBC
dataset, and 200 instances where 100 instances are absence
of heart disease and 100 instances are presence of heart dis-
ease from the HD dataset. The chosen instances are used for
testing the success rate of the two classifiers. From Table 2
we can see that the total number of correctly classified
malignant instances in WBC dataset is 94 out of 100 (94 %)

and that of benign instances is 92 out of 100 (92 %). In
total, 200 samples are correctly classified out of 186(93 %).
Similarly, the total number of correctly classified instances
in HD dataset is 194 out of 200 (97 %). Obviously, our
privacy-preserving algorithm can achieve a high accuracy.

6.3 Computation complexity

The proposed PDiag scheme can offer efficient
online medical primary diagnosis service to medical
users. Specifically, we assume the average dimen-
sion of statistic vectors is k, the number of symptom
attributes is n and the number of disease classes is
f . When the user generates the encrypted information
W1,1, W1,2, . . . , W1,m1+2, . . . , Wn,1, Wn,2, . . . Wn,mn+2,
it requires n(2k + 2) multiplication operations for x =
(x1, . . . , xn). After receiving the ciphertext from the user, it
will cost SP f n(3k + 2) multiplication operations to gen-
erate D

(1)
1 , . . . , D

(1)
n , D

(2)
1 , . . . , D

(2)
n , . . . , D

(f )

1 , . . . , D
(f )
n .

To obtain the final diagnosis result, it will cost the user
(3f n − f ) multiplication operations. Denote the com-
putational costs of an exponentiation operation and a
multiplication operation by Ce and Cm, respectively. Then
totally for the user and SP, the computational cost will be

Table 2 Accuracy of PDiag

Accuracy WBC HD

Yes(100) 94(94 %) 96(96 %)

No(100) 92(92 %) 98(98 %)

Overall(200) 186(93.0 %) 194(97.0 %)

(2kn + 2n + 3f n − f ) ∗ Cm and (3f kn + 2f n) ∗ Cm in
PDiag.

Different from many of time-consuming fully and par-
tially homomorphic encryption techniques, the proposed
PDiag uses lightweight polynomial aggregation technique,
which can provide efficient online medical primary diagno-
sis service for users while preserves the privacy of medical
users’ data and the Bayes classifier efficiently with low
overhead in computation. In the following, for the compar-
ison with PDiag, we selected a clinical decision support
system [13], which we call CDSS in the rest of paper for
the sake of simplicity, and it also preserves the privacy of
patient data as well as the Bayes classifier by using Paillier
encryption technique and secure multiplication protocol.
We assume the number of symptom attributes is n and the
number of disease classes is f too. And the corresponding
computational costs of the user and SP are (4f kn + 2kn −
4)∗Ce +(5f kn+nk)∗Cm and (11f kn−7)∗Ce +(7f kn−
5) ∗ Cm, respectively, in CDSS.

We present the computation complexity comparison of
PDiag and CDSS in Table 3. It is obvious that our proposed
PDiag scheme can achieve efficient medical diagnosis with
low computation complexity in the user and SP. To fur-
ther demonstrate the advantage of the proposed PDiag over
CDSS, we evaluate the computation overhead in the envi-
ronment described in Section 6.1. Figures 4 and 5 depict
the computation overhead varying with the number of dis-
ease classes in user and SP, and we assume the dimension
of query vector is 20 and the average dimension of statistic
vectors is 100. Comparing Figs. 4 and 5, we can find that
with the increase of the numbers of disease classes, the com-
putation overhead of CDSS is much higher than that of our
proposed PDiag scheme. Although the computation over-
head of our proposed PDiag scheme also increases when
the number of disease classes is large, it is still much lower
than that of CDSS. In addition, the user needs to interact
with SP many times in CDSS and only once in PDiag to
achieve the final diagnosis result. In conclusion, our pro-
posed PDiag scheme can achieve better efficiency in terms
of computation overhead in user and SP.

6.4 Efficiency evaluation

In order to test the factors that may affect the efficiency of
our proposed PDiag, different naive Bayes classifiers are
randomly generated. We evaluate the computation complex-
ity of our proposed PDiag in the user and SP, respectively.

6.4.1 SP

In our proposed PDiag scheme, the factors which may
impact the computation complexity in SP are the dimen-
sion of the query vector and the number of diseases to be
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Table 3 Comparison of
Computation Complexity PDiag CDSS

User (2kn + 2n + 3f n − f ) ∗ Cm (4f kn + 2kn − 4)*Ce + (5f kn + nk)*Cm

SP (3f kn + 2f n) ∗ Cm (11f kn − 7)*Ce + (7f kn − 5)*Cm

classified. Therefore, different dimensions of query vectors
and different numbers of diseases are chosen to illus-
trate the computation cost of SP. The dimensions of query
vectors are selected from 5 to 30, and the numbers of dis-
eases are chosen from 2 to 12. Then, we execute 1000
times with different dimensions and numbers. As shown
in Fig. 6, we can learn that the computation overhead of
SP increases with the increasing of query vectors’ dimen-
sion and diseases’ number. The reason is that, when SP
intends to offer online medical primary diagnosis service
to the user, statistics vectors will be operated to com-
pute D

(1)
1 , . . . , D

(1)
n , D

(2)
1 , . . . , D

(2)
n , . . . , D

(f )

1 , . . . , D
(f )
n ,

which will cost more time with the increase of diseases’
number and query vectors’ dimension. But due to the fact
that basic operations are based on lightweight polynomial
aggregation technique, which are very quick in speed, the
maximum time required for SP is less than 80 milliseconds.

6.4.2 The user

The query response time of user (i.e. smartphone) is an
important result illustrating the feasibility of our proposed
PDiag scheme. Therefore, different dimensions of data
queries are chosen to illustrate the computation cost of
smartphone. To observe the computation cost of smart-
phone, the dimensions of query vectors are selected from 5
to 30, and the numbers of diseases are chosen from 2 to 12.
Then, we execute 1000 times with different dimensions and
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Fig. 4 Average running time of SP in PDiag and CDSS

numbers. Specifically, Fig. 7 shows the computation over-
head of smartphone increases with the increasing of query
vectors’ dimension and diseases’ number. The reason is that
smartphone needs to compute more encrypted parameters
with increase of query vectors’ dimension and diseases’
number. Similarly, due to the fact that basic operations
are based on lightweight polynomial aggregation technique,
which are very quick in speed, the maximum time required
for user is less than 2 seconds.

6.4.3 Integrated performance in real environment

In order to evaluate the integrated performance of our pro-
posed PDiag scheme, the PDiag scheme is deployed in real
environment. The integrated performance is measured by
the overhead in computation and communication, i.e., the
average response time. The dimensions of query vectors are
selected from 5 to 30, and the number of diseases is fixed at
6. Then we execute 1000 times with different dimensions. In
particular, Fig. 8 shows the average response time of PDiag
increases with the increasing of query vectors’ dimension.
We can find that the entire overhead for once whole privacy-
preserving online medical primary diagnosis service query
is consistent with the results in the simulation environment,
and all the query response time is less than 2 seconds in real
environment.

From the above analysis, our proposed PDiag
scheme is indeed efficient in terms of computation and
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communication cost, which is suitable for providing online
medical primary diagnosis service in real environment.

7 Related works

In this section, we briefly discuss some related works
on medical diagnosis and privacy-preserving naive Bayes
algorithm.

As the evolution of machine learning techniques, various
diseases prediction models were built in biomedical engi-
neering [22–30]. By training a Naive Bayes classifier in
MR images, Zhou et al. [22] proposed a new approach to
improve the brain diagnosis accuracy. Ajemba et al. [24]
developed a fast predictive tool to predict the risk of pro-
gression of adolescent idiopathic scoliosis by employing a
support vector classifier approach. In order to diagnose pan-
creatic cancer, Wang et al. [25] presented a risk prediction
model by using Bayesian classification. Moreover, many
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Fig. 8 Query response time in real environment

naive Bayes prediction models were built to predict whether
a patient has the heart disease or not and showed a good
performance in accuracy [28–30]. However, all these medi-
cal diagnosis schemes are all in the plain domain, and they
can’t be used for providing disease prediction service via
the Internet due to the fact that privacy has become a major
concern.

Aiming at the privacy concern, Mathew and Obradovic
[31] proposed a privacy-preserving scheme for construct-
ing a useful clinical tool in the form of a decision tree,
which can be used for diagnosing disease, while it can only
protect the privacy of the training dataset. Bos et al. [12]
presented a working implementation of a prediction ser-
vice to diagnose the likelihood of contracting a disease by
using logistic regression and the Cox proportional hazard
model. While in their setting, the predictive model is pub-
licly known, and their proposed scheme can only protect
the patient’s information. Liu et al. [13] proposed a privacy-
preserving clinical diagnosis system using naive Bayesian
classifier, which can also help clinician complementary to
diagnose the risk of patients’ disease in a privacy-preserving
way. Similarly, a privacy-preserving system using the sup-
port vector machine was proposed by Rahulamathavan et al.
[14], and it can help to diagnose the patients without com-
promising the privacy of patients and third part. Since all the
encrypted operations are based on homomorphic encryption
technique, their efficiencies are not very high.

In the following, we detail the works of privacy-
preserving naive Bayes algorithm. When it comes to con-
structing the global Bayes model without revealing their
private databases, many existing approaches are consid-
ered instances of a secure multi-party problem. To build
a privacy-preserving naive Bayes classifier on horizon-
tally partitioned data, Kantarcioglu and Vaidya [32] first
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used secure summation and logarithm method to make it,
but the proposed protocol is vulnerable to collusion and
eavesdropping attack. Then Yang et al. [33] proposed a
privacy-preserving classification protocol by using additive
homomorphic property of a modified version of ElGamal.
Afterwards, Yi et al. [34] improved Kantarcioglu-Vaidya
protocol [32] in terms of efficiency and security by using
Paillier cryptosystem. Similarly, Sumana et al. [35] designed
an improved privacy-preserving distributed naive Bayesian
classifier by using the homorphic property of Paillier. To
produce a a privacy preserving naive Bayes classifier with-
out using a trusted third party, Gangrade et al. [36] proposed
a three layer protocol by introducing a un-trusted third party,
but the assumption that the communication networks used
by the input parties to communicate with the UTP are secure
seems rather restrictive. As for as data are vertically par-
titioned, Vaidya et al. [37] developed a privacy-preserving
naive Bayes classifier on vertically partitioned data by using
homomorphic public key encryption system. Then Keshava-
murthy and Toshniwal [38] constructed a global classifi-
cation model by using naive Bayes classification, which
addressed various fragmentation issues such as horizon-
tal, vertical and arbitrary distribution require format, while
the need of a trusted third party seems rather restrictive.
To resist both collusion and eavesdropping attacks during
the distributed privacy-preserving of naive Bayes learning,
Huai et al. [39] constructed differentially private protocols
where data are either horizontally or vertically partitioned.
However, they cannot be used for the user and service
provider scenario considered in this paper. Meanwhile,
most of homomorphic encryption schemes require massive
resource-consuming computation, which makes them not
quite suitable for providing efficient classification service
via the Internet.

Different from all of the above works, our proposed
PDiag scheme aims at the efficiency and privacy issues, and
based on lightweight polynomial aggregation technique, we
develop an efficient privacy-preserving online medical pri-
mary diagnosis scheme on naive Bayes classification. In
particular, our proposed PDiag scheme can protect users’
medical data privacy as well as ensure the confidential-
ity of diagnosis model, and can be easily implemented in
smartphone and computer because of its high efficiency.

8 Conclusion

In this paper, we have proposed an efficient and privacy-
preserving online medical primary diagnosis scheme, called
PDiag, on naive Bayes classification. Based on an improved
expression for naive Bayes classification, PDiag is intro-
duced with lightweight polynomial aggregation technique.
With PDiag, users’ medical data privacy and the confi-
dentiality of naive Bayes classifier can be protected with

low overhead in computation and communication. Specifi-
cally, for a data query from a registered user, the response
is directly performed on ciphertext at the service provider
without decryption, and the diagnosis result can also only
be decrypted by the registered user. Meanwhile, this scheme
can achieve a high accuracy of disease prediction. Thus, the
user can get efficient online medical primary diagnosis ser-
vice without compromising privacy and accuracy. Detailed
security analysis shows its security strength and privacy-
preserving ability, and extensive experiments are conducted
to demonstrate its efficiency.

9 Availability

The implementation of the proposed PDiag scheme
and relevant information can be downloaded at
http://xdzhuhui.com/demo/PDiag.
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